學術研究
畢業論文
用於玻璃基板上低損耗波導之研究
姓名 : 曹家豪
指導教授
王培勳
論文摘要
隨著科學技術的發展,光子元件因其獨特的特性,像是高集成度、大規模製造、低功耗和高靈敏度,受到了廣泛關注。這些特性使其在高速計算、通訊和化學/生物傳感等應用中非常適用。在金屬氧化物半導體(CMOS)製造技術的幫助下,光子集成電路(PICs)展示了在光通信、生物化學傳感、微波合成器和非線性光學等多種應用中的潛力,提供了在光子學和光電學領域中的緊湊、集成和可擴展的製造能力。在各種光子技術中,微環形共振腔對於在晶片上實現光學功能發揮重要作用。通過有效地將光從直波導耦合到環型共振腔內,共振腔內在特定頻率下表現出獨特的光學響應,具有增強的腔內功率。這一特性為晶片上的非線性光學鋪平了道路。同時,通過電訊號外部改變共振腔頻率的能力提供了調製和過濾功能。如今,使用不同材料去製造我們的微環形共振腔得到了廣泛的研究,如矽、聚合物、氮化矽(Si3N4)和III-V族材料,而本論文使用聚合物(SU8)及氮化矽來做為波導的材料,甚至將兩者作結合,去比較它們,而從中可以發現聚合物(SU8)比起氮化矽在製作我們的元件時,聚合物(SU8)波導在製作上有較大的靈活性,且只需經過微影製程就可以得到我們想要的結構,達到了省時且省力的優點,但是他的缺點就是無法承受後段的高溫製程,接著是本論文所製作的低限制氮化矽波導,它與現今的CMOS製程有更好的匹配程度,而且由於氮化矽薄膜較薄,可以使光傳遞在品質較好的氧化層中,使其能降傳輸損耗,還能增加耦合效率,不過它需經過蝕刻的製程,容易在過程中遇到像是側壁垂直度較差、表面較為粗糙等問題,所以為了結合上述的優點,我們製作出混合型波導,不僅可以有靈活的設計,且不需經過蝕刻製程,還可達成和低限制氮化矽波導一樣,可以使光能傳遞在品質較好的薄膜中,使其能降傳輸損耗,還能增加耦合效率。最近,光波導進一步作為光學模組集成在同一包裝或芯片中,稱為共同光學封裝(CPO)。與安裝在板上的獨立光學模組不同,CPO提供了更低的能耗和延遲,使下一代數據中心的光通訊和網絡系統更加高效和可擴展。然而,在大多數專注於矽光子的研究中,常見的基板仍然是矽或藍寶石基板(用於III-V族晶體生長)。此外,通常需要在矽基板上沉積厚度超過2 μm的二氧化矽(SiO2)層作為絕緣層,這大大限制了製造過程的靈活性。與傳統的矽基板相比,玻璃基板現在已成為半導體封裝的首選載體基板,特別是在顯示器和便攜設備中。由於與SiO2層具有可比的折射率,玻璃基板本質上防止了波導到基板的大多數核心層的光學洩漏。玻璃基板潛在地提供了光學組件的無縫組裝,實現了光纖到波導的互連、CPO和集成平台內多芯片模塊的創建。然而,由於玻璃基板的加工溫度較低,波導材料受到限制,因此波導損耗仍然較高。