學術研究

首頁 學術研究 畢業論文
畢業論文
機器學習工具應用於光學鏡頭工廠 生產策略協作方法之研究 姓名 : 賴昇倍

指導教授
張榮森


論文摘要
攝影是大多數行動裝置的必備功能,關鍵的塑膠鏡頭零件在配對的生產過程中,最耗費人力資源;現有產品約有10~15% 在公差上下限邊緣或超出公差,裝配後累積公差很容易就會超出標準範圍,目前處理方法是靠專業技師以人工、像差互補方式,將零件排列、配對找出最佳組合,再實際小批量生產進行確認,耗時、費工、程序複雜。 本論文主要提出利用像差理論以及機器學習預測工具,研究新的生產配對、驗證方式以達到流程精簡目標: 首先架構出一個利用零件尺寸進行ZEMAX光學MTF結果的模擬,進行實際生產預測;(1)利用零件生產的歷史數據判斷生產公差範圍。(2)將範圍公差隨機帶入ZEMAX 模擬軟體產生批量數據庫,作為回歸模型基礎。(3)根據模型基礎進行擬和程度分析修正成與ZEMAX 輸出一致的裝配資料。(4)持續收集實際生產數據與零件尺寸對應MTF數據進行二次修正;其中修正方式,可以進行線性修正,或是對預測模型再次回歸訓練;完成零件尺寸與生產結果相對的預測資料。 完成的光學預測結果,直接教導電腦搭配出實際生產想要的MTF組合;光學理論所謂的搭配其實就是在進行鏡頭像差的抵消;基於此概念,我們將兩個主要影響鏡頭成像的像場彎曲(Field Curvature)與傾斜像差(Tilt)兩種像差進行搭配抵消。電腦程序是先將零件進行洗牌搭配預測其品質,並設置門檻值,通過門檻則跳出迴圈;可透過AI學習,優化搭配速度與精準度,再進行生產流程安排、實際驗證,最後將總體結果與傳統生產方法做比較,產生效益分析;結果顯示此方法可將14天的選配工時縮短到1天,且隨資料庫的累積學習,生產效率與品質越來越好,此為光學工廠智能化的重要基礎。



地址: 320317 桃園市中壢區中大路300號 國鼎光電大樓 電話: 03-4227151 ext 65251 傳真: 03-4252897 Email: ncu5251@ncu.edu.tw
Copyright © 2005-2024 Department of Optics and Photonics, National Central University 隱私權政策聲明