學術研究
畢業論文
鈮酸鋰薄膜光電元件之製程開發與研究
姓名 : 林依欣
指導教授
陳彥宏
論文摘要
本實驗主要開發鈮酸鋰薄膜波導之不同製備方法,並分析及比較各方法之優缺點。本實驗將x-cut鈮酸鋰薄膜波導設計於單模條件下,並透過軟體R-soft之光束傳播法(Beam propagation method, BPM)模擬直波導、絕熱耦合器(Adiabatic coupler, AC)及晶片上的量子系統(Quantum system-on-chip, QSoC)之模態及光傳播情況。
模擬結果顯示,於絕熱耦合器(Adiabatic coupler)有效耦合長度為0.4mm,相比於傳統鈮酸鋰20mm-50mm之耦合長度大幅減小了98%; 並且於晶片尺寸5mm1mm0.5mm之QSoC得到25%:25%:25%:25%之分光比。
波導製備方法分為兩部分,共五種方法,第一部份(方法一、二、四)利用黃光微影、濕蝕刻及乾蝕刻技術於鈮酸鋰薄膜上蝕刻出脊型波導;第二部份(方法三)利用雙束聚焦離子系統(Dual beam-focused ion beam system, FIB),於鈮酸鋰薄膜上蝕刻出線寬0.8m,側壁角度82之脊型波導,並量測TE偏振光總插入損耗~15.77dB,耦合損耗估計為14.19dB,傳播損耗估計為0.35dB/mm;TM偏振光總插入損耗為20.58dB,傳播損耗估計為25.75dB/mm。
另一方面,在與耶拿大學合作下,利用IBEE(Ion-beam enhanced etching)聚焦離子數蝕刻法(方法五),成功量測到AC及QSoC模態分佈,其AC結構總損耗為22.19dB。
在未來工作上,由於此脊狀波導結構於鈮酸鋰薄膜上完成,有別於傳統的鈮酸鋰調制器,可將元件尺度縮小至微米等級,未來配合CMOS等級之電光驅動電壓,可以與矽光子學等相關技術進一步整合,作為重要的矽光子學中之主動調制元件並實現積體化元件。