學術研究
畢業論文
人工智慧於雨量預測以及測謊之應用
姓名 : 劉丁瑋
指導教授
陳啟昌
論文摘要
深度學習是實現人工智慧的技術,它開創了許多人工智慧的實際應用。其優勢在於它們比起動態或物理模型需要更少的開發時間,且相對地簡單。
本研究使用人工智慧類神經網路的一種計算技術,Echo State Network( ESN )演算法,是屬於Reservoir Computing( RC )的一種計算技術。它是一種簡單,快速和高效的非線性演算法,本研究使用該方法應用於雨量之預測以及測謊之判斷。 雨量是評估水資源、農業、生態系統及水文的重要依據。而使用深度學習演算法來預測是一項很有發展性的方式。本實驗使用 ESN 架構,並對台南地區曾文觀測站(120.497E,23.219N)及高雄潮位站(座標為120.283E, 22.617N)自 2002 年至 2014 年每小時的氣象資料進行分析。並將其與其他神經網路演算法做比較,結果表明 ESN的計算結果優於 MATLAB 類神經網路 toolbox 所提供的數種計算工具。此研究成果對於水庫發電與土石流防災有幫助。
本研究另一主題則是使用深度學習進行測謊的研究。目前普遍的測謊儀是藉由觀測受試者之皮膚電阻、呼吸波與脈搏波(血壓)等三項主要參數來測量人們的心理變化,而本研究則是將受試者之回答錄音,經過在語音辨識( Speech Recognition )以及語者辨識( Speaker Recognition )中常用到的特徵參數,稱為梅爾倒頻譜係數( Mel-scale Frequency Cepstral Coefficients, MFCC )之處理後再經過 ESN 架構進行演練,結果證明使用深度學習在測謊應用上也可以達到不錯的成效,平均正確率可達65%,最高正確率可高達100%,為測謊提供一個新的可行方式。