課程介紹
課程大綱
OS7160-* 光電半導體物理基礎 更新日期: 2022-05-31
課程目標
修習條件
主要教本
There are NO textbooks for this course. Some good and somewhat relevant references are listed below:
1. P. Bhattacharya, Semiconductor Optoelectronic Devices, 2nd ed. (Prentice-Hall, 1996).
2. C. Kittel, Introduction to Solid State Physics, 8th ed. (John Wiley & Sons, 2005).
3. N. W. Ashcroft and N. D. Mermin, Solid State Physics, (Brooks/Cole, 1976).
4. D. A. Neamen, Semiconductor Physics and Devices (McGraw-Hill, 2003)
5. J. P. McKelvey, Solid State and Semiconductor Physics (Harper & Row, 1966)
6. J. Singh, Physics of Semiconductors and Their Heterostructures (McGraw-Hill, 1993).
7. M. Shur, Physics of Semiconductor Devices (Prentice Hall, 1990).
8. P. Yu and M. Cardona, Fundamentals of Semiconductors, Physics and Materials Properties (Springer, 1996)
9. A. Yariv, Quantum Electronics (Wiley, 1989).
10. S.-L. Chuang, Physics of Optoelectronic Devices (John Wiley & Sons, 1995).
11. H. C. Casey, Jr. and M. B. Panish, Heterostructrue Lasers, Part A: Fundamental Principles, Chapter 3, Academic, Orlando, FL, 1978.
12. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, 2007).
13. Some other books that will be mentioned in the lecture notes."
內容大綱
Semiconductor Materials, Alloy Semiconductors, Lattice-Mismatched and Pseudomorphic Materials, Transmission Media and Choice of Materials
2. Review of Solid State Principles
Crystal Structure, Wigner–Seitz Cell, Fourier Analysis and Reciprocal Lattice, Diffraction of Waves by Crystals (Bragg Law, Laue Condition), Brillouin Zone
3. Basic Quantum Mechanics
Schrodinger's Wave Equation, Dynamical Variables and Quantum Mechanical Operators, Eigenvalue Problem for a Linear Hermitian Operator, Further Properties of Operators, Linear Vector Spaces and Quantum Mechanics
4. Quantum Theory of Electrons in Periodic Lattices
Schrodinger‘s Equation, Bloch Theorem, Kronig-Penny Model, Wave Equation of Electron in a Periodic Potential, Semiconductor Band Structure, Crystal Momentum, Effective Mass, Concept of Holes
5. Electronic Properties of Semiconductors
Effect of Temperature and Pressure on Bandgap, Semiconductor Statistics (Energy Distribution Function, Density of States Function), Conduction Processes in Semiconductors, Bulk and Surface Recombination Phenomena
6. Perturbation Theory
Time-Dependent Perturbation Theory, Time-Independent Perturbation Theory, Harmonic Perturbation and Fermi‘s Golden Rule
7. Optical Processes in Semiconductors
Optical Transitions Using Fermi‘s Golden Rule, Interband Absorption in Bulk Semiconductor, Spontaneous and Stimulated Emissions, Interband Absorption and Gain in Quantum-Well Structure, Intersubband Absorption
Appendix A. Mathematical Background
Appendix B. The Wave Packet Picture
Appendix C. Tensor Analysis